EnKF and filter divergence

David Kelly

Andrew Stuart

Kody Law

Courant Institute New York University New York, NY dtbkelly.com

December 11, 2014

Applied and computational mathematics seminar, NIST.

Talk outline

- 1. What is EnKF?
- 2. What is known about EnKF?
- **3**. How can we use stochastic analysis to better understand EnKF?

The filtering problem

We have a deterministic model

$$\frac{d\mathbf{v}}{dt} = F(\mathbf{v})$$
 with $\mathbf{v}_0 \sim N(m_0, C_0)$.

We will denote $\mathbf{v}(t) = \Psi_t(\mathbf{v}_0)$. Think of this as **very high dimensional** and **nonlinear**.

We want to **estimate** $v_j = v(jh)$ for some h > 0 and j = 0, 1, ..., J given the **observations**

$$y_j = H v_j + \xi_j$$
 for ξ_j iid $N(0, \Gamma)$.

The filtering problem

We have a **deterministic model**

$$\frac{d\mathbf{v}}{dt} = F(\mathbf{v})$$
 with $\mathbf{v}_0 \sim N(m_0, C_0)$.

We will denote $\mathbf{v}(t) = \Psi_t(\mathbf{v}_0)$. Think of this as **very high dimensional** and **nonlinear**.

We want to **estimate** $v_j = v(jh)$ for some h > 0 and j = 0, 1, ..., J given the **observations**

$$y_i = Hv_i + \xi_i$$
 for ξ_i iid $N(0, \Gamma)$.

We can write down the conditional density using **Bayes' formula** ...

But for high dimensional nonlinear systems it's horrible.

David Kelly (NYU) EnKF December 11, 2014 4 / 2

We can write down the conditional density using **Bayes' formula** ...

But for high dimensional nonlinear systems it's horrible.

Bayes' formula filtering update

Let $Y_j = \{y_0, y_1, \dots, y_j\}$. We want to compute the conditional density $\mathbf{P}(v_{j+1}|Y_{j+1})$, using $\mathbf{P}(v_j|Y_j)$ and y_{j+1} .

By Bayes' formula, we have

$$P(v_{j+1}|Y_{j+1}) = P(v_{j+1}|Y_j, y_{j+1}) \propto P(y_{j+1}|v_{j+1})P(v_{j+1}|Y_j)$$

But we need to compute the integral

$$\mathbf{P}(\mathbf{v}_{j+1}|Y_j) = \int \mathbf{P}(\mathbf{v}_{j+1}|Y_j,\mathbf{v}_j)\mathbf{P}(\mathbf{v}_j|Y_j)d\mathbf{v}_j.$$

For high dimensional nonlinear systems, this is computationally infeasible

Bayes' formula filtering update

Let $Y_j = \{y_0, y_1, \dots, y_j\}$. We want to compute the conditional density $\mathbf{P}(v_{j+1}|Y_{j+1})$, using $\mathbf{P}(v_j|Y_j)$ and y_{j+1} .

By Bayes' formula, we have

$$\mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_{j+1}) = \mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_j, \mathbf{y}_{j+1}) \propto \mathbf{P}(\mathbf{y}_{j+1}|\mathbf{v}_{j+1})\mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_j)$$

But we need to compute the integral

$$\mathbf{P}(\mathbf{v}_{j+1}|Y_j) = \int \mathbf{P}(\mathbf{v}_{j+1}|Y_j,\mathbf{v}_j)\mathbf{P}(\mathbf{v}_j|Y_j)d\mathbf{v}_j.$$

For high dimensional nonlinear systems, this is computationally infeasible

Bayes' formula filtering update

Let $Y_j = \{y_0, y_1, \dots, y_j\}$. We want to compute the conditional density $\mathbf{P}(v_{j+1}|Y_{j+1})$, using $\mathbf{P}(v_j|Y_j)$ and y_{j+1} .

By Bayes' formula, we have

$$\mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_{j+1}) = \mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_j, \mathbf{y}_{j+1}) \propto \mathbf{P}(\mathbf{y}_{j+1}|\mathbf{v}_{j+1})\mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_j)$$

But we need to compute the integral

$$\mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_j) = \int \mathbf{P}(\mathbf{v}_{j+1}|\mathbf{Y}_j,\mathbf{v}_j)\mathbf{P}(\mathbf{v}_j|\mathbf{Y}_j)d\mathbf{v}_j.$$

For high dimensional nonlinear systems, this is computationally infeasible.

The **Ensemble Kalman Filter** (EnKF) is a lower dimensional algorithm. (Evensen '94)

EnKF generates an ensemble of approximate samples from the posterior.

The **Ensemble Kalman Filter** (EnKF) is a lower dimensional algorithm. (Evensen '94)

EnKF generates an ensemble of approximate samples from the posterior.

For linear models, one can draw samples, using the Randomized Maximum Likelihood method.

RML method

Let $u \sim N(\widehat{m}, \widehat{C})$ and $\eta \sim N(0, \Gamma)$. We make an observation

$$\mathbf{y} = H\mathbf{u} + \eta$$
.

We want the conditional distribution of u|y. This is called an **inverse** problem.

$$\{\widehat{u}^{(1)},\ldots,\widehat{u}^{(K)}\}\sim N(\widehat{m},\widehat{C})$$

$$\{u^{(1)},\ldots,u^{(K)}\}\sim u|y$$

David Kelly (NYU) **EnKF** December 11, 2014 8 / 28

RML method

Let $u \sim N(\widehat{m}, \widehat{C})$ and $\eta \sim N(0, \Gamma)$. We make an observation

$$\mathbf{v} = H\mathbf{u} + \eta$$
.

We want the conditional distribution of u|y. This is called an **inverse problem**.

RML takes a sample

$$\{\widehat{\boldsymbol{u}}^{(1)},\ldots,\widehat{\boldsymbol{u}}^{(K)}\}\sim N(\widehat{\boldsymbol{m}},\widehat{\boldsymbol{C}})$$

and turns them into a sample

$$\{\mathbf{u}^{(1)},\ldots,\mathbf{u}^{(K)}\}\sim \mathbf{u}|\mathbf{y}$$

David Kelly (NYU) EnKF December 11, 2014

RML method: How does it work?

Along with the prior sample $\{\widehat{u}^{(1)}, \dots, \widehat{u}^{(K)}\}$, we create **artificial** observations $\{y^{(1)}, \dots, y^{(K)}\}$ where

$$\mathbf{y}^{(k)} = \mathbf{y} + \eta^{(k)}$$
 where $\eta^{(k)} \sim \mathit{N}(0,\Gamma)$ i.i.d

Then define $u^{(k)}$ using the **Bayes formula** update, with $(\widehat{u}^{(k)}, y^{(k)})$

$$u^{(k)} = \widehat{u}^{(k)} + G(\widehat{u})(y^{(k)} - H\widehat{u}^{(k)})$$
.

Where the "Kalman Gain" $G(\widehat{u})$ is computing using the covariance of the prior \widehat{u} .

The set $\{u^{(1)}, \dots, u^{(K)}\}$ are exact samples from u|y.

David Kelly (NYU) EnKF December 11, 2014

RML method: How does it work?

Along with the prior sample $\{\widehat{u}^{(1)}, \dots, \widehat{u}^{(K)}\}$, we create **artificial** observations $\{y^{(1)}, \dots, y^{(K)}\}$ where

$$\mathbf{y}^{(k)} = \mathbf{y} + \eta^{(k)}$$
 where $\eta^{(k)} \sim N(0, \Gamma)$ i.i.d

Then define $u^{(k)}$ using the **Bayes formula** update, with $(\widehat{u}^{(k)}, y^{(k)})$

$$\mathbf{u}^{(k)} = \widehat{\mathbf{u}}^{(k)} + G(\widehat{\mathbf{u}})(\mathbf{y}^{(k)} - H\widehat{\mathbf{u}}^{(k)}).$$

Where the "Kalman Gain" $G(\widehat{u})$ is computing using the covariance of the prior \widehat{u} .

The set $\{u^{(1)}, \dots, u^{(K)}\}\$ are exact samples from u|y.

EnKF uses the same method, but with an approximation of the covariance in the Kalman gain.

Suppose we are given the ensemble $\{u_j^{(1)}, \ldots, u_j^{(K)}\}$ at time j. For each ensemble member, we create an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}$$
 , $\xi_{j+1}^{(k)}$ iid $N(0, \Gamma)$

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right)$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted ensemble covariance**

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}).$$

Suppose we are given the ensemble $\{u_j^{(1)}, \dots, u_j^{(K)}\}$ at time j. For each ensemble member, we create an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}$$
 , $\xi_{j+1}^{(k)}$ iid $N(0,\Gamma)$.

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right)$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted ensemble covariance**

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}).$$

Suppose we are given the ensemble $\{u_j^{(1)}, \dots, u_j^{(K)}\}$ at time j. For each ensemble member, we create an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}$$
 , $\xi_{j+1}^{(k)}$ iid $N(0,\Gamma)$.

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right)$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted ensemble covariance**

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}).$$

Suppose we are given the ensemble $\{u_j^{(1)}, \dots, u_j^{(K)}\}$ at time j. For each ensemble member, we create an **artificial observation**

$$y_{j+1}^{(k)} = y_{j+1} + \xi_{j+1}^{(k)}$$
 , $\xi_{j+1}^{(k)}$ iid $N(0,\Gamma)$.

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) ,$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted** ensemble covariance

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}).$$

Suppose we are given the ensemble $\{u_j^{(1)}, \ldots, u_j^{(K)}\}$ at time j. For each ensemble member, we create an **artificial observation**

$$\mathbf{y}_{j+1}^{(k)} = \mathbf{y}_{j+1} + \xi_{j+1}^{(k)}$$
, $\xi_{j+1}^{(k)}$ iid $N(0,\Gamma)$.

We update each particle using the Kalman update

$$u_{j+1}^{(k)} = \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) ,$$

where $G(u_j)$ is the **Kalman gain** computed using the **forecasted** ensemble covariance

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)}).$$

What do we know about EnKF?

Theorem : For linear forecast models, ENKF \rightarrow KF as $N \rightarrow \infty$

What do we know about EnKF? **Not much.**

Theorem : For linear forecast models, ENKF \rightarrow KF as $N \rightarrow \infty$

What do we know about EnKF? **Not much.**

Theorem : For linear forecast models, $\mathsf{ENKF} \to \mathsf{KF}$ as $\mathsf{N} \to \infty$

(Le Gland et al / Mandel et al. 09').

Ideally, we would like a theorem about long time behaviour of the filter for a finite ensemble size.

Filter divergence

David Kelly (NYU) EnKF December 11, 2014 14 / 28

Filter divergence

In certain situations, it has been observed (*) that the ensemble can **blow-up** (ie. reach machine-infinity) in **finite time**, even when the model has nice bounded solutions.

This is known as catastrophic filter divergence.

We would like to investigate whether this has a **dynamical justification** or if it is simply a **numerical artefact**.

★ Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).

Filter divergence

In certain situations, it has been observed (\star) that the ensemble can **blow-up** (ie. reach machine-infinity) in **finite time**, even when the model has nice bounded solutions.

This is known as catastrophic filter divergence.

We would like to investigate whether this has a **dynamical justification** or if it is simply a **numerical artefact**.

* Harlim, Majda (2010), Gottwald (2011), Gottwald, Majda (2013).

Assumptions on the dynamics

We make a **dissipativity** assumption on the model. Namely that

$$\frac{d\mathbf{v}}{dt} + A\mathbf{v} + B(\mathbf{v}, \mathbf{v}) = f$$

with A linear elliptic and B bilinear, satisfying certain estimates and symmetries.

This guarantees uniformly bounded solutions.

Eg. 2d-Navier-Stokes, Lorenz-63, Lorenz-96.

Discrete time results

For a fixed observation frequency h > 0 we can prove

Theorem (AS,DK,KL)

If $H=\Gamma=$ Id then there exists constant eta>0 such that

$$\mathbf{E}|u_j^{(k)}|^2 \le e^{2\beta jh} \mathbf{E}|u_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta h} - 1}\right)$$

Rmk. This becomes useless as $h \to 0$

Discrete time results

For a fixed observation frequency h > 0 we can prove

Theorem (AS,DK,KL)

If $H = \Gamma = Id$ then there exists constant $\beta > 0$ such that

$$|\mathbf{E}|u_j^{(k)}|^2 \le e^{2\beta jh} \mathbf{E}|u_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta h} - 1}\right)$$

Rmk. This becomes useless as $h \to 0$

Discrete time results

For a fixed observation frequency h > 0 we can prove

Theorem (AS,DK,KL)

If $H = \Gamma = Id$ then there exists constant $\beta > 0$ such that

$$|\mathbf{E}|u_j^{(k)}|^2 \le e^{2\beta jh} \mathbf{E}|u_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{e^{2\beta jh} - 1}{e^{2\beta h} - 1}\right)$$

Rmk. This becomes useless as $h \rightarrow 0$

Discrete time results with variance inflation

Suppose we replace

$$\widehat{C}_{j+1} \mapsto \alpha^2 I + \widehat{C}_{j+1}$$

at each update step. This is known as additive variance inflation.

Theorem (AS,DK,KL)

If $H=\operatorname{Id}$ and $\Gamma=\gamma^2\operatorname{Id}$ then there exists constant $\beta>0$ such that

$$|\mathbf{E}|e_j^{(k)}|^2 \le \theta^j |\mathbf{E}|e_0^{(k)}|^2 + 2K\gamma^2 \left(\frac{1-\theta^j}{1-\theta}\right)^2$$

where $\theta=rac{\gamma^2 {
m e}^{2 eta h}}{lpha^2+\gamma^2}$. In particular, if we pick lpha large enough (so

$$\lim_{j o \infty} \mathsf{E} |e_j^{(k)}|^2 \leq rac{2K\gamma^2}{1- heta}$$

Discrete time results with variance inflation

Suppose we replace

$$\widehat{C}_{j+1} \mapsto \alpha^2 I + \widehat{C}_{j+1}$$

at each update step. This is known as additive variance inflation.

Theorem (AS,DK,KL)

If $H=\operatorname{Id}$ and $\Gamma=\gamma^2\operatorname{Id}$ then there exists constant $\beta>0$ such that

$$|\mathbf{E}|e_{j}^{(k)}|^{2} \le \theta^{j}\mathbf{E}|e_{0}^{(k)}|^{2} + 2K\gamma^{2}\left(\frac{1-\theta^{j}}{1-\theta}\right)^{2}$$

where $\theta=\frac{\gamma^2 \mathrm{e}^{2\beta h}}{\alpha^2+\gamma^2}$. In particular, if we pick α large enough (so that $\theta<1$) then

$$\lim_{j\to\infty} \mathbf{E} |\boldsymbol{e}_j^{(k)}|^2 \le \frac{2K\gamma^2}{1-\theta}$$

Discrete time results with variance inflation

Suppose we replace

$$\widehat{C}_{j+1} \mapsto \alpha^2 I + \widehat{C}_{j+1}$$

at each update step. This is known as additive variance inflation.

Theorem (AS, DK, KL)

If H=Id and $\Gamma=\gamma^2Id$ then there exists constant $\beta>0$ such that

$$|\mathbf{E}|e_{j}^{(k)}|^{2} \le \theta^{j}\mathbf{E}|e_{0}^{(k)}|^{2} + 2K\gamma^{2}\left(\frac{1-\theta^{j}}{1-\theta}\right)^{2}$$

where $\theta=rac{\gamma^2 {\rm e}^{2\beta h}}{\alpha^2+\gamma^2}$. In particular, if we pick α large enough (so that $\theta<1$) then

$$\lim_{j\to\infty} \mathbf{E} |e_j^{(k)}|^2 \le \frac{2K\gamma^2}{1-\theta}$$

For observations with $h \ll 1$, we need another approach.

Recall the ensemble update equation

$$\begin{aligned} u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \\ &= \Psi_h(u_j^{(k)}) + \widehat{C}_{j+1} H^T (H^T \widehat{C}_{j+1} H + \Gamma)^{-1} \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \end{aligned}$$

Subtract $u_i^{(k)}$ from both sides and divide by h

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + h\Gamma)^{-1}\left(y_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

Clearly we need to rescale the noise (ie. Γ).

 David Kelly (NYU)
 EnKF
 December 11, 2014
 19 / 28

Recall the ensemble update equation

$$\begin{aligned} u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \\ &= \Psi_h(u_j^{(k)}) + \widehat{C}_{j+1} H^T (H^T \widehat{C}_{j+1} H + \Gamma)^{-1} \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \end{aligned}$$

Subtract $u_i^{(k)}$ from both sides and divide by h

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + h\Gamma)^{-1}\left(y_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

Clearly we need to rescale the noise (ie. Γ).

 David Kelly (NYU)
 EnKF
 December 11, 2014
 19 / 28

Recall the ensemble update equation

$$\begin{aligned} u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \\ &= \Psi_h(u_j^{(k)}) + \widehat{C}_{j+1} H^T (H^T \widehat{C}_{j+1} H + \Gamma)^{-1} \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \end{aligned}$$

Subtract $u_j^{(k)}$ from both sides and divide by h

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + h\Gamma)^{-1}\left(y_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

Clearly we need to rescale the noise (ie. Γ)

Recall the ensemble update equation

$$\begin{aligned} u_{j+1}^{(k)} &= \Psi_h(u_j^{(k)}) + G(u_j) \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \\ &= \Psi_h(u_j^{(k)}) + \widehat{C}_{j+1} H^T (H^T \widehat{C}_{j+1} H + \Gamma)^{-1} \left(y_{j+1}^{(k)} - H \Psi_h(u_j^{(k)}) \right) \end{aligned}$$

Subtract $u_j^{(k)}$ from both sides and divide by h

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + h\Gamma)^{-1}\left(y_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

Clearly we need to rescale the noise (ie. Γ).

 David Kelly (NYU)
 EnKF
 December 11, 2014
 19 / 28

If we set $\Gamma = h^{-1}\Gamma_0$ and substitute $y_{j+1}^{(k)}$, we obtain

$$\begin{split} \frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} &= \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + \Gamma_{0})^{-1} \\ & \left(H^{\mathbf{v}} + h^{-1/2}\Gamma_{0}^{1/2}\xi_{j+1} + h^{-1/2}\Gamma_{0}^{1/2}\xi_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right) \end{split}$$

But we know that

$$\Psi_h(u_j^{(k)}) = u_j^{(k)} + O(h)$$

and

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})$$

$$= \frac{1}{K} \sum_{k=1}^{K} (u_j^{(k)} - \overline{u_j})^T (u_j^{(k)} - \overline{u_j}) + O(h) = C(u_j) + O(h)$$

David Kelly (NYU) EnKF December 11, 2014

20 / 28

If we set $\Gamma = h^{-1}\Gamma_0$ and substitute $y_{i+1}^{(k)}$, we obtain

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} + \widehat{C}_{j+1}H^{T}(hH^{T}\widehat{C}_{j+1}H + \Gamma_{0})^{-1}$$
$$\left(H\mathbf{v} + h^{-1/2}\Gamma_{0}^{1/2}\boldsymbol{\xi}_{j+1} + h^{-1/2}\Gamma_{0}^{1/2}\boldsymbol{\xi}_{j+1}^{(k)} - H\Psi_{h}(u_{j}^{(k)})\right)$$

But we know that

$$\Psi_h(\mathbf{u}_j^{(k)}) = \mathbf{u}_j^{(k)} + O(h)$$

and

$$\widehat{C}_{j+1} = \frac{1}{K} \sum_{k=1}^{K} (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})^T (\Psi_h(u_j^{(k)}) - \overline{\Psi_h(u_j)})$$

$$= \frac{1}{K} \sum_{k=1}^{K} (u_j^{(k)} - \overline{u_j})^T (u_j^{(k)} - \overline{u_j}) + O(h) = C(u_j) + O(h)$$

David Kelly (NYU) EnKF 20 / 28

We end up with

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} - C(u_{j})H^{T}\Gamma_{0}^{-1}H(u_{j}^{(k)} - v_{j}) + C(u_{j})H^{T}\Gamma_{0}^{-1}\left(h^{-1/2}\xi_{j+1} + h^{-1/2}\xi_{j+1}^{(k)}\right) + O(h)$$

This looks like a numerical scheme for Itô S(P)DE

$$\frac{du^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v) \qquad (\bullet)$$

$$+ C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dB}{dt} + \frac{dW^{(k)}}{dt}\right).$$

 David Kelly (NYU)
 EnKF
 December 11, 2014
 21 / 28

We end up with

$$\frac{u_{j+1}^{(k)} - u_{j}^{(k)}}{h} = \frac{\Psi_{h}(u_{j}^{(k)}) - u_{j}^{(k)}}{h} - C(u_{j})H^{T}\Gamma_{0}^{-1}H(u_{j}^{(k)} - v_{j}) + C(u_{j})H^{T}\Gamma_{0}^{-1}\left(h^{-1/2}\xi_{j+1} + h^{-1/2}\xi_{j+1}^{(k)}\right) + O(h)$$

This looks like a numerical scheme for Itô S(P)DE

$$\frac{d\mathbf{u}^{(k)}}{dt} = F(\mathbf{u}^{(k)}) - C(\mathbf{u})H^{T}\Gamma_{0}^{-1}H(\mathbf{u}^{(k)} - \mathbf{v}) \qquad (\bullet)$$

$$+ C(\mathbf{u})H^{T}\Gamma_{0}^{-1/2}\left(\frac{d\mathbf{B}}{dt} + \frac{d\mathbf{W}^{(k)}}{dt}\right).$$

 David Kelly (NYU)
 EnKF
 December 11, 2014
 21 / 28

Nudging

$$\frac{d\mathbf{u}^{(k)}}{dt} = F(\mathbf{u}^{(k)}) - C(\mathbf{u})H^{T}\Gamma_{0}^{-1}H(\mathbf{u}^{(k)} - \mathbf{v}) \qquad (\bullet)$$

$$+ C(\mathbf{u})H^{T}\Gamma_{0}^{-1/2}\left(\frac{d\mathbf{B}}{dt} + \frac{d\mathbf{W}^{(k)}}{dt}\right).$$

- 2 Extra dissipation only occurs in the space spanned by ensemble

David Kelly (NYU) **EnKF** December 11, 2014 22 / 28

Nudging

$$\frac{d\mathbf{u}^{(k)}}{dt} = F(\mathbf{u}^{(k)}) - C(\mathbf{u})H^{T}\Gamma_{0}^{-1}H(\mathbf{u}^{(k)} - \mathbf{v}) \qquad (\bullet)$$

$$+ C(\mathbf{u})H^{T}\Gamma_{0}^{-1/2}\left(\frac{d\mathbf{B}}{dt} + \frac{d\mathbf{W}^{(k)}}{dt}\right).$$

- 1 Extra dissipation term only sees differences in observed space
- 2 Extra dissipation only occurs in the space spanned by ensemble

David Kelly (NYU) **EnKF** December 11, 2014 22 / 28

Nudging

$$\frac{d\mathbf{u}^{(k)}}{dt} = F(\mathbf{u}^{(k)}) - C(\mathbf{u})H^{T}\Gamma_{0}^{-1}H(\mathbf{u}^{(k)} - \mathbf{v}) \qquad (\bullet)$$

$$+ C(\mathbf{u})H^{T}\Gamma_{0}^{-1/2}\left(\frac{d\mathbf{B}}{dt} + \frac{d\mathbf{W}^{(k)}}{dt}\right).$$

- 1 Extra dissipation term only sees differences in observed space
- 2 Extra dissipation only occurs in the space spanned by ensemble

David Kelly (NYU) **EnKF** December 11, 2014 22 / 28

Kalman-Bucy limit

If F were linear and we write $m(t) = \frac{1}{K} \sum_{k=1}^{K} u^{(k)}(t)$ then

$$\frac{dm}{dt} = F(m) - C(u)H^{T}\Gamma_{0}^{-1}H(m-v)
+ C(u)H^{T}\Gamma_{0}^{-1/2}\frac{dB}{dt} + O(K^{-1/2}).$$

This is the equation for the **Kalman-Bucy** filter, with empirical covariance C(u). The remainder $O(K^{-1/2})$ can be thought of as a **sampling error**.

Kalman-Bucy limit

If F were **linear** and we write $m(t) = \frac{1}{K} \sum_{k=1}^{K} u^{(k)}(t)$ then

$$\frac{dm}{dt} = F(m) - C(u)H^{T}\Gamma_{0}^{-1}H(m-v)
+ C(u)H^{T}\Gamma_{0}^{-1/2}\frac{dB}{dt} + O(K^{-1/2}).$$

This is the equation for the **Kalman-Bucy** filter, with empirical covariance C(u). The remainder $O(K^{-1/2})$ can be thought of as a **sampling error**.

Continuous-time results

Theorem (AS,DK)

Suppose that $\{u^{(k)}\}_{k=1}^K$ satisfy (\bullet) with $H = \Gamma = Id$. Let

$$e^{(k)} = u^{(k)} - v.$$

Then there exists constant $\beta > 0$ such that

$$\frac{1}{K}\sum_{k=1}^K \mathbf{E}|e^{(k)}(t)|^2 \leq \left(\frac{1}{K}\sum_{k=1}^K \mathbf{E}|e^{(k)}(0)|^2\right) \exp\left(\beta t\right) .$$

 David Kelly (NYU)
 EnKF
 December 11, 2014
 24 / 28

Why do we need $H = \Gamma = Id$?

In the equation

$$\frac{du^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v)
+ C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right) .$$

The **energy** pumped in by the noise must be balanced by **contraction** of $(u^{(k)} - v)$. So the operator

$$C(u)H^T\Gamma_0^{-1}H$$

must be positive-definite.

Both C(u) and $H^T\Gamma_0^{-1}H$ are pos-def, but this doesn't guarantee the same for the **product**!

Why do we need $H = \Gamma = Id$?

In the equation

$$\begin{aligned} \frac{d\mathbf{u}^{(k)}}{dt} &= F(\mathbf{u}^{(k)}) - C(\mathbf{u})H^T\Gamma_0^{-1}H(\mathbf{u}^{(k)} - \mathbf{v}) \\ &+ C(\mathbf{u})H^T\Gamma_0^{-1/2}\left(\frac{d\mathbf{W}^{(k)}}{dt} + \frac{d\mathbf{B}}{dt}\right) \ . \end{aligned}$$

The **energy** pumped in by the noise must be balanced by **contraction** of $(u^{(k)} - v)$. So the operator

$$C(\mathbf{u})H^T\Gamma_0^{-1}H$$

must be **positive-definite**.

Both C(u) and $H^T\Gamma_0^{-1}H$ are pos-def, but this doesn't guarantee the same for the **product**!

Why do we need $H = \Gamma = Id$?

In the equation

$$\frac{du^{(k)}}{dt} = F(u^{(k)}) - C(u)H^{T}\Gamma_{0}^{-1}H(u^{(k)} - v)
+ C(u)H^{T}\Gamma_{0}^{-1/2}\left(\frac{dW^{(k)}}{dt} + \frac{dB}{dt}\right).$$

The **energy** pumped in by the noise must be balanced by **contraction** of $(u^{(k)} - v)$. So the operator

$$C(\mathbf{u})H^T\Gamma_0^{-1}H$$

must be **positive-definite**.

Both C(u) and $H^T\Gamma_0^{-1}H$ are pos-def, but this doesn't guarantee the same for the **product**!

Testing stability on the fly

Suppose we can actually measure the spectrum of the operator

$$C(\mathbf{u})H^T\Gamma_0^{-1}H$$

whilst the algorithm is running. If we know that it is pos-def, then the filter must not be blowing up.

If we knew that

$$C(u)H^T\Gamma_0^{-1}H \ge \lambda(t) > 0$$
.

Then we can say even more (eg. stability).

Testing stability on the fly

Suppose we can actually measure the spectrum of the operator

$$C(\mathbf{u})H^T\Gamma_0^{-1}H$$

whilst the algorithm is running. If we know that it is pos-def, then the filter must not be blowing up.

If we knew that

$$C(\mathbf{u})H^T\Gamma_0^{-1}H \geq \lambda(t) > 0$$
.

Then we can say even more (eg. stability).

Summary + Future Work

- (1) Writing down an SDE/SPDE allows us to see the **important quantities** in the algorithm.
- (2) Does not "prove" that catastrophic filter divergence is a numerical phenomenon, but is a decent starting point.
- (1) Improve the condition on H.
- (2) If we can **measure** the important quantities, then we can test the performance during the algorithm.
- (3) Make use of controllability and observability.

Summary + Future Work

- (1) Writing down an SDE/SPDE allows us to see the **important** quantities in the algorithm.
- (2) Does not "prove" that catastrophic filter divergence is a numerical phenomenon, but is a decent starting point.
- (1) Improve the condition on H.
- (2) If we can **measure** the important quantities, then we can test the performance during the algorithm.
- (3) Make use of controllability and observability.

Thank you!

Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time.

D. Kelly, K.Law, A. Stuart.

Nonlinearity 2014.

www.dtbkelly.com